
GASNet:
A Portable High-Performance

Communication Layer for Global
Address-Space Languages

Dan Bonachea, Mike Welcome,
Christian Bell, Paul Hargrove

In conjunction with the joint UC Berkeley and LBL
Berkeley UPC compiler development project

http://upc.lbl.gov



NERSC/UPC Runtime System
Organization

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code Compiler



GASNet Communication System- Goals

• Hardware-independence: variety
of parallel architectures & OS's
– SMP: Origin 2000, Linux/Solaris

multiprocessors, etc.
– Clusters of uniprocessors: Linux

clusters (myrinet, infiniband, via,
etc)

– Clusters of SMPs: IBM SP-2
(LAPI), Compaq Alphaserver, Linux
CLUMPS, etc.

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code Compiler

• Language-independence: Compatibility with several
global-address space languages and compilers
– UPC, Titanium, Co-array Fortran, possibly others..

– Hide UPC- or compiler-specific details such as shared-pointer
representation



GASNet Communication System- Goals (cont)
• Ease of implementation on new hardware

– Allow quick implementations

– Allow implementations to leverage
performance characteristics of hardware

– Allow flexibility in message servicing paradigm:
• polling, interrupts, hybrids, etc

• Want both portability & performance

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code Compiler



GASNet Communication System- Architecture

• 2-Level architecture to ease implementation:

• Core API
– Most basic required primitives, as narrow and

general as possible

– Implemented directly on each platform

– Based heavily on active messages paradigm

• Extended API
– Wider interface that includes more complicated

operations

– We provide a reference implementation of the
extended API in terms of the core API

– Implementors can choose to directly implement
any subset for performance - leverage hardware
support for higher-level operations

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware



Progress to Date
• Designed & wrote the GASNet Specification
• Reference implementation of extended API

– Written solely in terms of the core API

• Implemented a portable MPI-based core API
• Completed native (core&extended) GASNet

implementations for several high-performance
networks:
– Quadrics Elan (Dan)
– Myrinet GM (Christian)
– IBM LAPI (Mike)

• Did initial public release of GASNet
• Implementation under-way for Infiniband (Paul)

– other networks under consideration



Core API – Active Messages

• Super-Lightweight RPC
– Unordered, reliable delivery

– Matched request/reply serviced by "user"-provided lightweight handlers

– General enough to implement almost any communication pattern

• Request/reply messages
– 3 sizes: short (<=32 bytes),medium (<=512 bytes), long (DMA)

• Very general - provides extensibility
– Available for implementing compiler-specific operations

– scatter-gather or strided memory access, remote allocation, etc.

• AM previously implemented on a number of interconnects
– MPI, LAPI, UDP/Ethernet, Via, Myrinet, and others

• Includes mechanism for explicit atomicity control in handlers
– Even in the presence of interrupts & multithreading

– Handler-safe locks & no-interrupt sections



Extended API – Remote memory operations
• Orthogonal, expressive, high-performance interface

– Gets & Puts for Scalars and Bulk contiguous data
– Blocking and non-blocking (returns a handle)
– Also have a non-blocking form where the handle is implicit

• Non-blocking synchronization
– Sync on a particular operation (using a handle)
– Sync on a list of handles (some or all)
– Sync on all pending reads, writes or both (for implicit

handles)
– Sync on operations initiated in a given interval
– Allow polling (trysync) or blocking (waitsync)

• Useful for experimenting with a variety of parallel
compiler optimization techniques



Extended API – Remote memory operations
• API for remote gets/puts:
void   get    (void *dest, int node, void *src, int numbytes)
handle get_nb (void *dest, int node, void *src, int numbytes)
void   get_nbi(void *dest, int node, void *src, int numbytes)

void   put    (int node, void *src, void *dest, int numbytes)
handle put_nb (int node, void *src, void *dest, int numbytes)
void   put_nbi(int node, void *src, void *dest, int numbytes)

• "nb"/"nbi" = non-blocking with explicit/implicit handle

• Also have "value" forms that are register-memory, and "bulk" forms
optimized for large memory transfers

• Extensibility of core API allows easily adding other more complicated
access patterns (scatter/gather, strided, etc)



Extended API – Remote memory operations

• API for get/put synchronization:

• Non-blocking sync with explicit handles:
int  try_syncnb(handle)

void wait_syncnb(handle)

int  try_syncnb_some(handle *, int numhandles)

void wait_syncnb_some(handle *, int numhandles)

int  try_syncnb_all(handle *, int numhandles)

void wait_syncnb_all(handle *, int numhandles)

• Non-blocking sync with implicit handles:
int  try_syncnbi_gets()

void wait_syncnbi_gets()

int  try_syncnbi_puts()

void wait_syncnbi_puts()

int  try_syncnbi_all()  // gets & puts

void wait_syncnbi_all()



Code Generation Tradeoffs
• Blocking vs. Non-blocking puts/gets
• Put/Get variety: non-bulk vs. bulk

– optimized for small scalars vs large zero-copy
– difference in semantics - put src, alignment

• Put/Get synchronization mechanism
– expressiveness/complexity tradeoffs
– explicit handle vs. implicit handle, access

regions

• Work remains to explore these tradeoffs in
the context of code generation



Performance Results



Experiments
• Micro-Benchmarks: ping-pong and flood

PUT/GET
Latency

Total
Time

ACK

Ping-pong
round-trip latency test

Round-trip Latency =
Total time / iterations

Inv. throughput

Total
Time

PUT/GET

ACK

Inv. throughput = Total time / iterations
BW = msg size * iter / total time

Flood bandwidth test



GASNet Configurations Tested

• Quadrics (elan):
– mpi-refext - AMMPI core, AM-based puts/gets

– elan-elan - pure native elan implementation

• Myrinet (GM):
– mpi-refext - AMMPI core, AM-based puts/gets

– gm-gm - pure native GM implementation

• IBM SP (LAPI):
– mpi-refext - AMMPI core, AM-based puts/gets

– lapi-lapi - pure native LAPI implementation



System Configurations Tested
• Quadrics - falcon/colt (ORNL)

– Compaq Alphaserver SC 2.0, ES40 Elan3, single-rail
– 64-node, 4-way 667 MHz Alpha EV67, 2GB, libelan1.2/1.3, OSF 5.1

• Quadrics - lemieux (PSC)
– Compaq Alphaserver SC, ES45 Elan3, double-rail (only tested w/single)
– 750-node, 4-way 1GHz Alpha, 4GB, libelan1.3, OSF 5.1

• Quadrics - opus (PNL)
– Itanium-2 Cluster, Elan3, double-rail (only tested w/single)
– 128-node, 2-way 1GHz Itanium-2, 12GB, libelan1.4, Redhat Linux 7.2

• Myrinet - Alvarez  (NERSC)
– x86 Cluster, 33Mhz 64-bit Myrinet 2000 PCI64C, 200 MHz Lanai 9.2
– 80-node, 2-way 866 Mhz P3, 1GB, GM 1.5.1, Redhat Linux 7.2
– Empirical PCI bus bandwidth: 229MB/sec read, 245 MB/sec write

• LAPI - seaborg  (NERSC)
– IBM RS/6000 SP Power3, Colony-GX network
– 380-node, 16-way 375MHz Power3, 64GB, 64KB L1, 8MB L2, AIX 5.1



GASNet Put/Get Roundtrip Latency
(min over msg sz)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

mpi elan mpi elan mpi elan mpi elan mpi gm mpi lapi lapi-
poll

m
ic

ro
se

co
nd

s

put_nb

get_nb

quadrics 
 falcon

quadrics  
colt

quadrics  
opus

quadrics  
lemieux

myrinet
alvarez

Colony/GX

seaborg



GASNet Put/Get Bulk Flood Bandwidth 
(max over msg sz)

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

mpi elan mpi elan mpi elan mpi elan mpi gm mpi lapi lapi-
poll

M
B

/s
ec

put_nb_bulk

get_nb_bulk

quadrics 
 falcon

quadrics  
colt

quadrics  
opus

quadrics  
lemieux

myrinet
alvarez

Colony/GX
seaborg



Quadrics elan-conduit
• Implementation based on elan-lib

– the "portable" Quadrics API (will be supported on
elan4)

• Core API
– Polling-based implementation on elan queue API and

TPORTS API
– Uses zero-copy elan RDMA puts for AM Long msgs

• Extended API
– Put/get implemented using zero-copy elan RDMA

puts/gets in the common case
– Some uncommon cases require bounce buffers or active

messages as fallback
– Barriers implemented using Quadrics hardware barrier

for anonymous barriers, or broadcast/barrier for named



Quadrics-lemieux 

Roundtrip ping-pong latency (non-bulk)

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

put

get

put_nbi

get_nbi

put_nb

get_nb

NB
puts

gets,
B put

Empirical round-trip latency of hardware: ~3.4 us



Quadrics-lemieux 

Flood Bandwidth (bulk)

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000

Message Size (bytes)

M
B

/s
ec

put_bulk

get_bulk

put_nbi_bulk

get_nbi_bulk

put_nb_bulk

get_nb_bulk

Theoretical peak bandwidth of NIC hardware: 340 MB/sec



Quadrics elan-conduit: Future work
• Work-around or resolve some problems

encountered in Quadrics elan-lib software
– dual-rail operation
– loopback on SMP nodes sharing a NIC

• Further performance tuning
– based on feedback from app experience
– implement split-phase barrier on NIC processor

• Continued maintenance with new versions of
elanlib
– new elan4 hardware expected soon

• We'd really like some Quadrics hardware of
our own to play with!  :)



Myrinet gm-conduit
• Work done by Christian Bell

• Initial Core API implementation took 2 weeks
– AM implementation fairly straightforward over GM

for Small/Medium AMs

– Long/LongAsync AMs required more work for
DMA support (addressed in extended API and
Firehose algorithm)

– Polling-based conduit (currently)

– Under threaded GASNet configuration (PAR),
allows for concurrent handler execution



Myrinet gm-conduit

• Extended API took 1 month
– Proposed and published a new algorithm, Firehose

algorithm, to improve performance of one-sided operations
over pinning-based networks (GM, Infiniband) (to be
presented at CAC ’03)

– One-sided operations used for bulk and non-bulk puts
– Gets currently use an AM with a one-sided put (GM 2.0 will

add one-sided gets)

• Bootstrapping problem
– Each Myrinet site must develop a custom bootstrapper or

use 3rd-party solutions (Millennium nightmare)
– GM conduit provides bootstrapping support for both

dedicated (PBS) and non-dedicated (gexec) cluster
configurations.



Alvarez-Myrinet 
Roundtrip ping-pong latency (non-bulk)

0

10

20

30

40

50

60

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
n

d
s

put

get

put_nbi

get_nbi

put_nb

get_nb

gets

puts

Empirical round-trip latency of hardware: ~17 us



Alvarez-Myrinet 
Flood Bandwidth (bulk)

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000

Message Size (bytes)

M
B

/s
ec

put_bulk

get_bulk

put_nbi_bulk

get_nbi_bulk

put_nb_bulk

get_nb_bulk

Empirical peak bandwidth of hardware: ~210 MB/sec (puts only)



Myrinet gm-conduit

• Future
– More efforts in tuning Firehose algorithm

– Support for GM 2.0 and one-sided gets

– Hooks for minimal interrupt support

– Continued bootstrapping support



GASNet/LAPI for IBM SP
• Initial (non-optimized) implementation took 2

weeks
– Use of GASNet conduit template provided simple

implementation framework
– GASNet PUT/GET Implemented using LAPI PUT/GET
– GASNet AM Request/Reply and Barriers implemented using

LAPI AMs
– Non-blocking Sync methods implemented using  LAPI counters
– Handler Safe Locks implemented using Pthread mutex
– No-Interrupt sections a No-op
– No memory registration issues

• 3 weeks for Active Message optimizations
• LAPI Conduit can run in Interrupt or Polling mode



GASNet/LAPI: AM Optimizations

• Optimizations only apply to GASNet operations
implemented using LAPI AM
– Specifically GASNet AM and Barrier operations
– Not needed for GASNet PUT/GET

• GASNet token caching and re-use to reduce allocation
overhead

• Packing small message payload into LAPI AM Header
Handler argument to reduce GASNet AM latency.

• Implementation of “Ready Queue” for quick execution
of GASNet AM Request/Reply handlers
– Eliminate 40-60 usec latency to schedule LAPI Completion Handler
– “Ready” handlers executed by main thread while polling



LAPI AM: Execution Flow
T

im
e:

 8
0-

10
0 

us
 (

no
 d

at
a 

pa
yl

oa
d)

Origin Task Target Task

1: Amsend(tgt,HH,uhdr,payload…)

2: HH executes in Dispatcher
   * specify tgt addr for payload
   * register CH (optional)

uhdrDataData…

3: After all data arrives Dispatcher
    will schedule CH (if registered)

4: CH executes in Completion Thread

5: Completion at Origin

Notes:
• HH is LAPI Header Handler
• CH is LAPI Completion Handler
• HH cannot block or issue comm calls
• uhdr is arg to HH (restricted size)
• Data Payload is optional
• CH registration is optional
• CH can execute arbitrary code

18-20 us

40-60 us!!!



LAPI seaborg (polling) 

Roundtrip ping-pong latency (non-bulk)

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

put

get

put_nbi

get_nbi

put_nb

get_nb

Empirical round-trip latency of hardware: ~42 us



LAPI seaborg (polling) 
Flood Bandwidth (bulk)

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000

Message Size (bytes)

M
B

/s
ec

put_bulk

get_bulk

put_nbi_bulk

get_nbi_bulk

put_nb_bulk

get_nb_bulk

Empirical peak bandwidth of hardware: ~350 MB/sec



GASNet/LAPI: Future Work
• Possible Future Optimizations:

– Reduce/Eliminate locking overhead (costly on SP)
• Token allocation
• Access to “Ready Queue”

– Improve Split-phase Barrier implementation
• Broadcast Tree?
• Implement as blocking barrier using LAPI_Gfence?

– Throttle NB PUT/GET to avoid performance drop-off

• Future LAPI may allow restricted communication in HH
– Would eliminate need for ready queue or CH for small

message GASNet Request AM
– NOTE: IBM will use this (future) LAPI version to re-

implement MPI



Conclusions
GASNet provides a portable & high-performance interface for

implementing GAS languages

• two-level design allows rapid prototyping & careful tuning
for hardware-specific network capabilities

• We have a fully portable MPI-based implementation of
GASNet, several native implementations (Myrinet,
Quadrics, LAPI) and other implementations on the way
(Infiniband)

• Performance results are very promising
– Overheads of GASNet are low compared to underlying network

– Interface provides the right primitives for use as a compilation
target, to support advanced compiler communication scheduling



Future Work
• Further tune our native GASNet implementations
• Implement GASNet on new interconnects

– Infiniband, Cray T3E, Dolphin SCI, SGI SHMEM, Cray X-1…

• Implement GASNet on other portable interfaces
– UDP/Ethernet, ARMCI…

• Augment Extended API with other useful functions
– Collective communication

• broadcast, reduce, all-to-all
• interface to be based on UPC Collective spec & Titanium collective ops

– More sophisticated memory access ops
• strided, scatter/gather (indexed put/get)
• interface to be based on ARMCI and Titanium ops

• Network benchmarking based on GASNet (Paul)



More Future Work
• Collaborate with ARMCI effort

– GASNet-over-ARMCI / or using ARMCI

• Potential External Collaborations
– (Go)DIVA HPCS Darpa project, Quadrics, others..

• Implement some small, real applications directly
on GASNet
– Experiment with the interface to gain further insights

into good code-generation strategies

– Gather some app-level performance results



Extra Slides



Introduction
• Two major paradigms for parallel programming

– Shared Memory
• single logical memory space, loads and stores for communication
• ease of programming

– Message Passing
• disjoint memory spaces, explicit communication
• often more scalable and higher-performance

• Another Possibility: Global-Address Space (GAS)
Languages
– Provide a global shared memory abstraction to the user, regardless

of the hardware implementation
– Make distinction between local & remote memory explicit
– Get the ease of shared memory programming, and the performance

of message passing
– Examples: UPC, Titanium, Co-array Fortran, …



The Case for Portability
• Most current UPC compiler implementations

generate code directly for the target system
– Requires compilers to be rewritten from scratch for each

platform and network

• We want a more portable, but still high-performance
solution
– Want to re-use our investment in compiler technology

across different platforms, networks and machine
generations

– Want to compare the effects of experimental parallel
compiler optimizations across platforms

– The existence of a fully portable compiler helps the
acceptability of UPC as a whole for application writers



Core API – Atomicity Support for Active Messages
• Atomicity in traditional Active Messages:

– handlers run atomically wrt. each other & main thread
– handlers never allowed block (e.g. to acquire a lock)
– atomicity achieved by serializing everything (even when not reqd)

• Want to improve concurrency of handlers
• Want to support various handler servicing paradigms while

still providing atomicity
– Interrupt-based or polling-based handlers, NIC-thread polling
– Want to support multi-threaded clients on an SMP
– Want to allow concurrency between handlers on an SMP

• New Mechanism: Handler-Safe Locks
– Special kind of lock that is safe to acquire within a handler

• HSL's include a set of usage constraints on the client and a set of
implementation guarantees which make them safe to acquire in a handler

– Allows client to implement critical sections within handlers



Why interrupt-based handlers cause problems
App. Thread

T
im

e

lock acquire

lock release

Critical
section

AM Handler

lock acquire

lock release

Async
Interrupt

Analogous problem if app thread makes a synchronous network call
(which may poll for handlers) within the critical section

DEADLOCK



Handler-Safe Locks
• HSL is a basic mutex lock

– imposes some additional usage rules on the client

– allows handlers to safely perform synchronization

• HSL's must always be held for a "bounded" amount of time
– Can't block/spin-wait for a handler result while holding an HSL

– Handlers that acquire them must also release them

– No synchronous network calls allowed while holding

– AM Interrupts disabled to prevent asynchronous handler execution

• Rules prevent deadlocks on HSL's involving multiple
handlers and/or the application code
– Allows interrupt-driven handler execution

– Allows multiple threads to concurrently execute handlers



No-Interrupt Sections
• Problem:

– Interrupt-based AM implementations run handlers asynchronously
wrt. main computation (e.g. from a UNIX signal handler)

– May not be safe if handler needs to call non-signal-safe functions
(e.g. malloc)

• Solution:
– Allow threads to temporarily disable interrupt-based handler

execution: hold_interrupts(), resume_interrupts()

– Wrap any calls to non-signal safe functions in a no-interrupt
section

– Hold & resume can be implemented very efficiently using 2 simple
bits in memory (interruptsDisabled bit, messageArrived bit)



Performance Benchmarking of
prototype MPI-based GASNet core

(built on pre-existing AM-MPI)



Experiments
• Experimental Platform: IBM SP Seaborg
• Micro-Benchmarks: ping-pong and flood
• Comparison

– blocking get/put, non-blocking get/put (explicit and implicit)
– AMMPI, MPI

Latency

Total
Time

REQ

ACK

Ping-pong
round-trip test

Round-trip Latency =
Total time / iterations

Inv. throughput

Total
Time

REQ

ACK

Inv. throughput = Total time / iterations
BW = msg size * iter / total time

Flood test



Latency (IBM SP, network depth = 8)

• Additional overhead of get/puts over AMMPI: 7 us

• Blocking and non-blocking get/puts equivalent

30
35

40
45

50
55

60
65

70
75

1 2 4 8 16 32bytes

us

blocking get
blocking put
non-blocking get
non-blocking put
AMMPI
MPI



Bandwidth (IBM SP, network depth = 8)

• Non-blocking get/puts performed as well as AMMPI

• Non-blocking get/puts are benefited from overlap

0

50

100

150

200

250

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72
bytes

M
B

/s
ec

MPI
AMMPI
non-blocking get
non-blocking put
blocking get
blocking put



Inv. Throughput (IBM SP, network depth = 8)

• Non-blocking get/puts performed as well as
AMMPI

0

200

400

600

800

1000

1200

16 32 64 128 256 512 1024 2048 4096 81921638432768655361E+05
bytes

us

blocking get
blocking put
non-blocking get
non-blocking put
AMMPI
MPI



Inv. Throughput (IBM SP, network depth = 8)

• Implies sender overhead.

• The difference from two round-trip latency can be used to
estimate wire-delay and receiver overhead

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256 512 1024 2048 4096 bytes

us

blocking get
blocking put
non-blocking get
non-blocking put
AMMPI
MPI



GASNet Put/Get Latency
(min over msg sz)

0

5

10

15

20

25

30

35

40

mpi-
refext

elan-
refext

elan-
elan

mpi-
refext

elan-
refext

elan-
elan

mpi-
refext

gm-gm mpi-
refext

gm-gm

m
ic

ro
se

co
n

d
s

put_nb

get_nb

quadrics -falcon quadrics - lemieux myrinet - millennium myrinet - alvarez



GASNet Put/Get Bulk Bandwidth 
(max over msg sz)

0

50

100

150

200

250

300

mpi-
refext

elan-
refext

elan-
elan

mpi-
refext

elan-
refext

elan-
elan

mpi-
refext

gm-gm mpi-
refext

gm-gm

M
B

/s
ec

put_nb_bulk

get_nb_bulk

quadrics - falcon quadrics - lemieux myrinet - millennium myrinet - alvarez



Results
• Explicit and implicit non-blocking get/put performed equally well
• Latency was good but can be tuned further

– blocking and non-blocking I/O  had 7 us overhead over AMMPI

• Bandwidth and throughput were satisfactory
– Non-blocking I/O performed as well as AMMPI.

• Overall performance is dominated by AMMPI implementation
• Expect better GASNet performance on a native AM

implementation

242 MB/sec159 MB/sec160 MB/sec113 MB/secBandwidth
(flood: at 128KB)

8 us29 us29 us79 usInv throughput
(flood: at 16bytes)

39 us60 us67 us67 usLatency
(ping-pong round trip)

MPIAMMPINon-blockingBlocking


